PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors.
نویسندگان
چکیده
PURPOSE We sought to determine whether phosphoinositide 3-kinase (PI3K) pathway mutation or activation state and rapamycin-induced feedback loop activation of Akt is associated with rapamycin sensitivity or resistance. EXPERIMENTAL DESIGN Cancer cell lines were tested for rapamycin sensitivity, Akt phosphorylation, and mTOR target inhibition. Mice injected with breast or neuroendocrine cancer cells and patients with neuroendocrine tumor (NET) were treated with rapalogs and Akt phosphorylation was assessed. RESULTS Thirty-one cell lines were rapamycin sensitive (RS) and 12 were relatively rapamycin resistant (RR; IC(50) > 100 nmol/L). Cells with PIK3CA and/or PTEN mutations were more likely to be RS (P = 0.0123). Akt phosphorylation (S473 and T308) was significantly higher in RS cells (P < 0.0001). Rapamycin led to a significantly greater pathway inhibition and greater increase in p-Akt T308 (P < 0.0001) and p-Akt S473 (P = 0.0009) in RS cells. Rapamycin and everolimus significantly increased Akt phosphorylation but inhibited growth in an in vivo NET model (BON). In patients with NETs treated with everolimus and octreotide, progression-free survival correlated with p-Akt T308 in pretreatment (R = 0.4762, P = 0.0533) and on-treatment tumor biopsies (R = 0.6041, P = 0.0102). Patients who had a documented partial response were more likely to have an increase in p-Akt T308 with treatment compared with nonresponders (P = 0.0146). CONCLUSION PIK3CA/PTEN genomic aberrations and high p-Akt levels are associated with rapamycin sensitivity in vitro. Rapamycin-mediated Akt activation is greater in RS cells, with a similar observation in patients with clinical responses on exploratory biomarker analysis; thus feedback loop activation of Akt is not a marker of resistance but rather may function as an indicator of rapamycin activity.
منابع مشابه
Predictive Biomarkers and Personalized Medicine PIK3CA/PTEN Mutations and Akt Activation As Markers of Sensitivity to Allosteric mTOR Inhibitors
Purpose: We sought to determine whether phosphoinositide 3-kinase (PI3K) pathway mutation or activation state and rapamycin-induced feedback loop activation of Akt is associated with rapamycin sensitivity or resistance. Experimental Design: Cancer cell lines were tested for rapamycin sensitivity, Akt phosphorylation, and mTOR target inhibition. Mice injected with breast or neuroendocrine cancer...
متن کاملTargeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092
As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosph...
متن کاملBringing target-matched PI3King from the bench to the clinic
Increased signaling through the phosphoinositide 3-kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) pathway occurs in diverse malignancies. In cancer, the PI3K/AKT/mTOR pathway can be activated by mutations in several oncogenes such as PIK3CA, PIK3R1, AKT, TSC1/2, LKB1 and PTEN (Fig. 1). Most activating mutations occur in the helical or kinase domain of the PIK3CA gene. Preclinical model...
متن کاملCorrelation between Activation of PI3K/AKT/mTOR Pathway and Prognosis of Breast Cancer in Chinese Women
BACKGROUND Abnormal activation of PI3K/AKT/mTOR (PAM) pathway, caused by PIK3CA mutation, KRAS mutation, PTEN loss, or AKT1 mutation, is one of the most frequent signaling abnormalities in breast carcinoma. However, distribution and frequencies of mutations in PAM pathway are unclear in breast cancer patients from the mainland of China and the correlation between these mutations and breast canc...
متن کاملTumor-biopsy stratification based on mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN
The mechanistic target of the rapamycin (mTOR) pathway is frequently activated in human cancers. Our objective was to evaluate relationships between mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN in solid-tumor biopsies from a broad selection of cancer types. Formalin-fixed paraffin-embedded (FFPE) tumor samples were analyzed by immunohistochemistry (IHC) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2012